17,527 research outputs found

    A new Bloch period for interacting cold atoms in 1D optical lattices

    Full text link
    The paper studies Bloch oscillations of ultracold atoms in optical lattice in the presence of atom-atom interaction. A new, interaction-induced Bloch period is identified. The analytical results are corroborated by realistic numerical calculations.Comment: revtex4, 4 pages, 4 figures, gzipped tar fil

    Possibility of Coherent Phenomena like Bloch Oscillations with Single Photons via W-States

    Full text link
    We examine the behavior of single photons at multiport devices and inquire if coherent effects are possible. In particular we study how single photons need to be manipulated in order to study coherent phenomena. We show that single photons need to be produced in W states which lead to vanishing mean amplitude but nonzero correlations between the inputs at different ports. Such correlations restore coherent effects with single photons. As a specific example we demonstrate Bloch oscillations with single photons and thus provide strict analog of Bloch oscillation of electrons.Comment: 5 pages, 7 figure

    Isentropic Curves at Magnetic Phase Transitions

    Full text link
    Experiments on cold atom systems in which a lattice potential is ramped up on a confined cloud have raised intriguing questions about how the temperature varies along isentropic curves, and how these curves intersect features in the phase diagram. In this paper, we study the isentropic curves of two models of magnetic phase transitions- the classical Blume-Capel Model (BCM) and the Fermi Hubbard Model (FHM). Both Mean Field Theory (MFT) and Monte Carlo (MC) methods are used. The isentropic curves of the BCM generally run parallel to the phase boundary in the Ising regime of low vacancy density, but intersect the phase boundary when the magnetic transition is mainly driven by a proliferation of vacancies. Adiabatic heating occurs in moving away from the phase boundary. The isentropes of the half-filled FHM have a relatively simple structure, running parallel to the temperature axis in the paramagnetic phase, and then curving upwards as the antiferromagnetic transition occurs. However, in the doped case, where two magnetic phase boundaries are crossed, the isentrope topology is considerably more complex

    CPT Violation Implies Violation of Lorentz Invariance

    Get PDF
    An interacting theory that violates CPT invariance necessarily violates Lorentz invariance. On the other hand, CPT invariance is not sufficient for out-of-cone Lorentz invariance. Theories that violate CPT by having different particle and antiparticle masses must be nonlocal.Comment: Minor changes in the published versio

    Bose-Einstein Condensates in Optical Quasicrystal Lattices

    Full text link
    We analyze the physics of Bose-Einstein condensates confined in 2D quasi-periodic optical lattices, which offer an intermediate situation between ordered and disordered systems. First, we analyze the time-of-flight interference pattern that reveals quasi-periodic long-range order. Second, we demonstrate localization effects associated with quasi-disorder as well as quasiperiodic Bloch oscillations associated with the extended nature of the wavefunction of a Bose-Einstein condensate in an optical quasicrystal. In addition, we discuss in detail the crossover between diffusive and localized regimes when the quasi-periodic potential is switched on, as well as the effects of interactions

    Polaron Physics in Optical Lattices

    Get PDF
    We investigate the effects of a nearly uniform Bose-Einstein condensate (BEC) on the properties of immersed trapped impurity atoms. Using a weak-coupling expansion in the BEC-impurity interaction strength, we derive a model describing polarons, i.e., impurities dressed by a coherent state of Bogoliubov phonons, and apply it to ultracold bosonic atoms in an optical lattice. We show that, with increasing BEC temperature, the transport properties of the impurities change from coherent to diffusive. Furthermore, stable polaron clusters are formed via a phonon-mediated off-site attraction.Comment: 4 pages, 4 figure

    Wannier-Stark ladders in one-dimensional elastic systems

    Full text link
    The optical analogues of Bloch oscillations and their associated Wannier-Stark ladders have been recently analyzed. In this paper we propose an elastic realization of these ladders, employing for this purpose the torsional vibrations of specially designed one-dimensional elastic systems. We have measured, for the first time, the ladder wave amplitudes, which are not directly accessible either in the quantum mechanical or optical cases. The wave amplitudes are spatially localized and coincide rather well with theoretically predicted amplitudes. The rods we analyze can be used to localize different frequencies in different parts of the elastic systems and viceversa.Comment: 10 pages, 6 figures, accepted in Phys. Rev. Let

    Collective decoherence of cold atoms coupled to a Bose-Einstein condensate

    Full text link
    We examine the time evolution of cold atoms (impurities) interacting with an environment consisting of a degenerate bosonic quantum gas. The impurity atoms differ from the environment atoms, being of a different species. This allows one to superimpose two independent trapping potentials, each being effective only on one atomic kind, while transparent to the other. When the environment is homogeneous and the impurities are confined in a potential consisting of a set of double wells, the system can be described in terms of an effective spin-boson model, where the occupation of the left or right well of each site represents the two (pseudo)-spin states. The irreversible dynamics of such system is here studied exactly, i.e., not in terms of a Markovian master equation. The dynamics of one and two impurities is remarkably different in respect of the standard decoherence of the spin - boson system. In particular we show: i) the appearance of coherence oscillations, i) the presence of super and sub decoherent states which differ from the standard ones of the spin boson model, and iii) the persistence of coherence in the system at long times. We show that this behaviour is due to the fact that the pseudospins have an internal spatial structure. We argue that collective decoherence also prompts information about the correlation length of the environment. In a one dimensional configuration one can change even stronger the qualitative behaviour of the dephasing just by tuning the interaction of the bath.Comment: 18 pages, 6 figures, two references adde
    corecore